Рецепторы. Определение и характеристика рецепторов Какие бывают рецепторы

Рецептор - сложное образование, состоящие из терминалей (нервных окончаний) и дендритов чувствительных нейронов, глии и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражение) в нервный импульс. Эта внешняя информация может поступать на рецептор в форме света, попадающего на сетчатку; механической деформации кожи, барабанной перепонки или полукружных каналов; химических веществ, проникающих в органы обоняния или вкуса. Большинство обычных сенсорных рецепторов (химических, температурных или механических) деполяризуется в ответ на стимул (такая же реакция, как и у обычных нейронов), деполяризация ведёт к высвобождению медиатора из аксонных окончаний. Однако существуют исключения: при освещении колбочки потенциал на её мембране возрастает - мембрана гиперполяризуется: свет, повышая потенциал, уменьшает выделение медиатора.

По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств. Животные могут воспринимать информацию следующих типов: - свет (фоторецепторы); - химические вещества - вкус, запах, влажность (хеморецепторы); - механические деформации - звук, прикосновение, давление, сила тяжести (механорецепторы); - температура (терморецепторы); - электричество (электрорецепторы).

Сенсорная клетка посылает информацию по принципу «всё или ничего» (есть сигнал / нет сигнала). Для того, чтобы определить интенсивность стимула, рецепторный орган использует параллельно несколько клеток, у каждой из которых имеется свой порог чувствительности. Существует и относительная чувствительность - на сколько процентов нужно изменить интенсивность сигнала, чтобы орган чувства зафиксировал изменение. Так, у человека относительная чувствительность яркости света примерно равна 1 %, силы звука - 10 %, силы тяжести - 3 %. Эти закономерности были открыты Бугером и Вебером; они справедливы только для средней зоны интенсивности раздражителей. Сенсорам также свойственна адаптация - они реагируют преимущественно на резкие изменения в окружающей среде, не «засоряя» нервную систему статической фоновой информацией. Ч

увствительность сенсорного органа можно значительно повысить посредством суммации, когда несколько расположенных рядом сенсорных клеток связаны с одним нейроном. Слабый сигнал, попадающий в рецептор, не вызвал бы возбуждения нейронов, если бы они были связаны с каждой из сенсорных клеток в отдельности, но вызывает возбуждение нейрона, в котором суммируется информация от нескольких клеток сразу. С другой стороны, этот эффект понижает разрешающую способность органа. Так, палочки в сетчатке глаза, в отличие от колбочек, обладают повышенной чувствительностью, так как один нейрон связан сразу с несколькими палочками, но зато имеют меньшую разрешающую способность. Чувствительность к очень малым изменениям в некоторых рецепторах очень высока благодаря их спонтанной активности, когда нервные импульсы возникают даже в отсутствие сигнала. В противном случае слабые импульсы не смогли бы преодолеть порог чувствительности нейрона. Порог чувствительности может изменяться благодаря импульсам, поступающим из центральной нервной системы (обычно по принципу обратной связи), что изменяет диапазон чувствительности рецептора. Наконец, важную роль в повышении чувствительности играет латеральное торможение. Соседние сенсорные клетки, возбуждаясь, оказывают друг на друга тормозящее воздействие. Благодаря этому усиливается контраст между соседними участками. В зависимости от строения рецепторов их подразделяют на первичные , или первичночувствующие, которые являются специализированными окончаниями чувствительного нейрона, и вторичные , или вторичночувствующие, представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула.

Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины. К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы, проприоцепторы и большинство интерорецепторов внутренних органов.

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора. С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами. В зависимости от источника адекватных стимулов рецепторы подразделяют на наружные и внутренние, или экстерорецепторы и интерорецепторы ; первые стимулируются при действии раздражителей внешней среды (электромагнитные и звуковые волны, давление, действие пахучих молекул), а вторые - внутренней (к этому типу рецепторов относят не только висцерорецепторы внутренних органов, но также проприоцепторы и вестибулярные рецепторы). В зависимости от того, действует стимул на расстоянии или непосредственно на рецепторы, их подразделяют еще на дистантные и контактные.

Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность.
  • Тельца Мейснера - рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность.
  • Тельца Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.
  • Рецепторы волосяных луковиц - реагируют на отклонение волоса.
  • Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями.

Рецепторы мышц и сухожилий

  • Мышечные веретена - рецепторы растяжения мышц, бывают двух типов: o с ядерной сумкой o с ядерной цепочкой
  • Сухожильный орган Гольджи - рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа - инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини.

Рецепторы сетчатки глаза Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которые содержат светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент - это и есть основа цветового зрения. Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны).

Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A. Эта молекула и представляет собой химически трансформируемую светом часть. Белковая часть выцвевшей молекулы зрительного пигмента активирует молекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата, участвующих в открытии пор мембраны для ионов натрия, в результате чего поток ионов прекращается - мембрана гиперполяризуется. Чувствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышку света такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки не способны реагировать на изменения освещённости когда свет настолько ярок, что все натриевые поры уже закрыты.


1. Центральная нервная система

Центральная нервная система - часть нервной системы позвоночных, представленная скоплением нервных клеток, образующих головной и спинной мозг.

Центральная нервная система регулирует процессы, протекающие в организме, и служит центром управления всех систем. В основе механизмов деятельности ЦНС лежит взаимодействие возбуждения и торможения.

Высшая нервная деятельность (ВНД)

Высшая нервная деятельность - по И. П. Павлову - сложная форма жизнедеятельности, обеспечивающая индивидуальное поведенческое приспособление человека и высших животных к изменяющимся условиям внешней среды.

В основе высшей нервной деятельности лежит взаимодействие врожденных безусловных и приобретаемых в процессе онтогенеза условных рефлексов, к которым у человека добавляется вторая сигнальная система.

Структурной основой ВНД являются кора больших полушарий с подкорковыми ядрами переднего мозга и некоторыми структурами промежуточного мозга.

2. Высшая нервная деятельность

Высшая нервная деятельность (ВНД) – деятельность высших отделов ЦНС, обеспечивающая наиболее совершенное приспособление животных и человека к окружающей среде (поведение). Структурная основа ВНД – кора больших полушарий с подкорковыми ядрами переднего и образованиями промежуточного мозга, однако жесткой связи ВНД с мозговыми структурами не существует. Низшую нервную деятельность представляют как функцию центральной нервной системы, направленную на регуляцию физиологических процессов в самом организме. Важнейшая особенность ВНД – сигнальный характер, позволяющий заблаговременно готовиться к той или иной форме деятельности (пищевой, оборонительной, половой и пр.)

Характеристики ВНД: изменчивость, сигнальность, адаптивность – обеспечивают гибкость и адаптивность реакций. Вероятностный характер внешней среды придает относительность любой поведенческой реакции и побуждает организм к вероятностному прогнозированию. Способность к обучению в высокой степени зависит не только от процессов возбуждения, но и торможения. Условное торможение способствует быстрой смене форм поведения соответственно условиям и мотивациям.

Термин ВНД введен И. П. Павловым, считавшим его равнозначным понятию «психическая деятельность». По И. П. Павлову, это объединенная рефлекторная (условно- и безусловно-рефлекторная) функция коры полушарий и ближайшей подкорки головного мозга. Также он ввел понятие «сигнальные системы», как системы условно-рефлекторных связей, выделяя общую для животных и человека первую сигнальную систему и специфичную только для человека вторую.

Первая сигнальная система (ПСС) – непосредственные ощущения и восприятия, составляет основу ВНД и сводится к совокупности многообразных условных и безусловных рефлексов на непосредственные раздражители. ПСС человека отличается большей скоростью распространения и концентрации нервного процесса, его подвижностью, что обеспечивает быстроту переключения и образования условных рефлексов. Животные лучше различают отдельные раздражители, человек – их комбинации.

Вторая сигнальная система сформировалась у человека на основе первой как система речевых сигналов (произносимых, слышимых, видимых). В словах содержится обобщение сигналов первой сигнальной системы. Процесс обобщения словом вырабатывается в ходе формирования условных рефлексов. Обобщенное отражение и абстракции формируется только в процессе общения, т.е. определяются биологическими и социальными факторами.

Рецептор - (от лат. recipere - получать), нервные образования, преобразующие химико-физические воздействия из внешней или внутренней среды организма в нервные импульсы; периферическая специализированная часть анализатора, посредством которой только определенный вид энергии трансформируется в процесс нервного возбуждения. Рецепторы широко варьируют по степени сложности структуры и по уровню приспособленности к своей функции. В зависимости от энергии соответствующего раздражения рецепторы делятся на механорецепторы и хеморецепторы. Механорецепторы обнаружены в ухе, вестибулярном аппарате, мышцах, суставах, в коже и внутренних органах. Хеморецепторы обслуживают обонятельную и вкусовую чувствительность: многие из них находятся в мозге, реагируя на изменения химического состава жидкой среды организма. Зрительные рецепторы также, по существу, являются хеморецепторами. В зависимости от положения в организме и выполняемой функции рецепторов делятся на экстерорецепторы, интерорецепторы и проприоцепторы. К экстерорецепторам относятся дистантные рецепторы, получающие информацию на некотором расстоянии от источника раздражения (обонятельные, слуховые, зрительные, вкусовые); интерорецепторы сигнализируют о раздражителях внутренней среды, а проприорецепторы - о состоянии двигательной системы организма. Отдельные рецепторы анатомически связаны друг с другом и образуют рецептивные поля, способные перекрываться.

3. Рецептор

От лат.Receptum - принимать

Рецептор - чувствительное нервное окончание или специализированная клетка, преобразующее воспринимаемое раздражение в нервные импульсы.

Все рецепторы характеризуются наличием специфического участка мембраны, содержащего рецепторный белок, обусловливающий процессы рецепции. В зависимости от выбранной классификации рецепторы подразделяются:

На первичные и вторичные;

На фото-, фоно-, термо-, электро- и баро-;

На экстеро- и интеро-;

На механо-, фото- и хемо-;

На ноцирецепторы, тепловые, холодовые, тактильные и т.п.;

На моно- и поливалентные;

На слуховые, зрительные, обонятельные, тактильные и вкусовые;

На контактные и дистантные;

На фазические, тонические и фазово-тонические.

Виды рецепторов. Адаптация рецепторных механизмов

Адаптация рецепторных механизмов - процесс снижения (редукции) активности рецепторов по мере действия раздражителя с постоянными физическими характеристиками.

Характер адаптации рецепторных механизмов зависит:

От свойств вспомогательного аппарата;

От особенностей воспринимающих структур рецептора;

От свойств регенеративных элементов нервного окончания;

Для вторичночувствующих рецепторов: от свойств синаптического контакта между рецептирующей клеткой и окончанием сенсорного нейрона.

Болевой рецептор

Ноцирецептор; Ноцицептор

Болевой рецептор - рецептор, раздражение которого вызывает болевое ощущение.

Вестибулорецепторы

Акцелерорецепторы

Вестибулорецепторы - рецепторы, воспринимающие изменения скорости и направления перемещения тела в пространстве. У человека вестибулорецепторы представлены волосковыми клетками перепончатого лабиринта внутреннего уха.

Вкусовые рецепторы

Вкусовые рецепторы - хеморецепторы, раздражение которых вызывает вкусовые ощущения.

Вкусовые рецепторы:

Локализуются в слизистой оболочке ротовой полости;

Реагируют на четыре типа веществ: кислое, соленое, горькое и сладкое.

Вторично-чувствующий рецептор

Несвободный рецептор

Вторично-чувствующий рецептор - рецептор, представляющий собой специализированную клетку, возбуждение которой передается окончаниям соответствующего афферентного нейрона.

Глюкорецепторы

Глюкорецепторы - рецепторы, чувствительные к изменению концентрации глюкозы в крови.

Дистантный рецептор

Телерецептор

Дистантный рецептор - рецептор, воспринимающий раздражения, источник которых находится на некотором расстоянии от организма.

Зрительные бугры

Зрительные бугры - часть промежуточного мозга; главные подкорковые центры чувствительности. В зрительные бугры по восходящим путям поступают импульсы со всех рецепторов тела, а отсюда - к коре больших полушарий.

Интерорецептор

Интероцептор; Висцерорецептор; Внутренний рецептор

От лат.Interior - внутренни + Capio - брать

Интерорецептор - рецептор:

Расположенный во внутренних органах, тканях или сосудах; и

Воспринимающий механические, химические и другие сдвиги во внутренней среде организма.

Кожный рецептор

Кожный рецептор - рецептор, расположенный в коже и обеспечивающий восприятие механического, температурного и болевого раздражения.

Механорецептор

Механорецептор - чувствительное нервное окончание, воспринимающее механические воздействия: давление, ускорение и др.

Мономодальный рецептор

Моновалентный рецептор

Мономодальный рецептор - рецептор, воспринимающий только один вид раздражения.

Обонятельные рецепторы

Обонятельные рецепторы - хеморецепторы слизистой оболочки верхних отделов полости носа, раздражение которых вызывает ощущение запаха.

Первично-чувствующий рецептор

Первично-чувствующий рецептор - рецептор, представляющий собой чувствительное нервное окончание.

Полимодальный рецептор

Поливалентный рецептор

Полимодальный рецептор - рецептор, воспринимающий несколько видов раздражений.

Тканевые рецепторы

Тканевые рецепторы - рецепторы, расположенные в органах и тканях вне специализированных рефлексогенных зон.

Тонический рецептор

Тонический рецептор - терморецептор, палочка сетчатки или другой медленно адаптирующийся рецептор, отвечающий более или менее постоянным образом на абсолютную величину раздражителя.

Хеморецепторы

Хемоцепторы; Химиорецепторы

Хеморецепторы - специализированные чувствительные клетки или клеточные структуры, посредством которых организм животных и человека воспринимает химические раздражители, в том числе изменения в обмене веществ. Воздействие химических веществ на хеморецепторы приводит к появлению в хеморецепторах биоэлектрических потенциалов.

Экстерорецептор

Экстероцептор; Внешний рецептор

От лат.Exter - лат + Recipere - брать

Экстерорецептор - рецептор, локализованный на поверхности тела и воспринимающий раздражения, поступающие из внешней среды. Обычно экстерорецепторами являются специализированные нервные эпителиальные образования.

Рецептор является рабочим органом периферической частью чувствительного нейрона. Тело нейрона расположено в межпозвонковом узле. Периферический отросток псевдоуниполярного ганглия заканчивается в тканях рецептором, центральный же входит в спинной мозг и участвует в формировании различных сенсорных путей.

Чувствительные нервные волокна делятся на ветви, которые направляются в различные участки одной ткани или в несколько различных тканей. Нервные окончания - рецепторы - могут располагаться непосредственно на рабочих структурах окружающих тканей, в таких случаях их называют свободными. Другие же прилегают к поверхности особых вспомогательных клеток и формируют несвободные окончания. Несвободные окончания могут быть заключены в более или менее сложно устроенную капсулу, состоящую из вспомогательных клеток (инкапсулированные рецепторы). По мнению гистологов, вспомогательные клетки выполняют функции опорной ткани и участвуют в возбудительном процессе.

С точки зрения функциональной специализации принято выделять экстеро -, проприо - и интерорецепторы. Экстерорецепторы, как следует из названия, расположены на покровных тканях человека и представлены большей частью свободными окончаниями. Некоторые нервные волокна сильно ветвятся и образуют кустики, ветви которых заканчиваются фибриллярными сеточками или утолщениями среди эпителиальных клеток, другие же направляются к свободной поверхности эпителия без ветвления и даже выходят на его поверхность. Концевые отделы таких рецепторов вместе со слущивающимися эпителиальными клетками отмирают и отрываются, что выражается повышенной регенеративной активностью рецепторов такого строения. Из специализированных рецепторов покровных тканей следует назвать несвободные окончания, встречающиеся в органах вкуса (вкусовые почки, луковицы и др.), осязательные тельца Меркеля, обонятельные луковицы и пр. С точки зрения акупунктуры важно, что в практической деятельности раздражению подвергаются рецепторы кожи и слизистых некоторых участков тела (носовая перегородка).

Более глубокие рецепторы залегают в мышцах, фасциях, связках, надкостнице, сосудах и нервах.

Рецептором поперечно - полосатой мышечной ткани является специализированное образование нервно - мышечные веретено. Оно представляет собой часть одного или двух - трех мышечных волокон длиной до нескольких миллиметров, оплетенную ветвями чувствительного нервного волокна, которое образует вокруг мышечных волокон подобие муфты. Эти рецепторы являются свободными, реагирующими на растяжение мышечной ткани.

Рецепторы миокарда представлены упомянутыми мышечными веретенами и "лазающими" нервными окончаниями, заканчивающимися широкими фибриллярными пластинками.

В гладкой мускулатуре различных внутренних органов обнаружены только кустиковидные рецепторы различной формы.

Рецепторы соединительной ткани и сосудов наиболее разнообразны. Среди них различаются свободные, несвободные и инкапсулированные окончания. Чаще других в соединительной ткани выявляются разнообразные кустиковидные или древовидные рецепторы различной степени сложности. Характерной формой рецепторов соединительной ткани являются нервные окончания в виде "клубочков". Наиболее рыхлые "клубочки" пронизаны соединительнотканными волокнами и являются рецепторами растяжения, другие относительно обособлены от окружающих тканей, выполняя роль рецепторов давления. Встречаются и более сложно устроенные нервные окончания в виде телец Фатер - Паччини, колб Краузе, Гольджи - Маццони, телец Мейснера. Установлено, что тельца Фатер - Паччини являются рецепторами механического давления, колбы Краузе температуры, Гольджи - Маццони давления и растяжения, Мейснера тактильных раздражителей.

Не менее разнообразны рецепторы сосудов. Сосуды имеют обильную чувствительную иннервацию на всем протяжении от сердца до внутриорганных капилляров. Основной формой рецепторов являются кустиковидные окончания, которые могут быть свободными и несвободными. Они регистрируют состояние растяжения сосудистой стенки, величину кровяного давления в сосудах, химический состав крови. Характерной особенностью рецепторов внутриорганных сосудов является то, что они охватывают своими разветвлениями и участок окружающей ткани (сосудисто - тканевые рецепторы). Рецепторы лимфатических сосудов изучены в меньшей степени, представлены они обычными рецепторами соединительной ткани.

Рецепторы периферической нервной системы и вегетативных ганглиев разнообразны по форме и выполняют функции общей рецепции.

Возникший в рецепторах нервный импульс потенциал действия сенсорного волокна доходит до первой релейной станции обработки (перцепции) афферентного потока в центральной нервной системе. Спинной мозг (medulla spinalis) у взрослых представляет собой тяж длиной 41 - 45 см, несколько сплюснутый спереди назад. Он имеет два утолщения, соответствующих корешкам нервов верхней и нижней конечностей. Из этих утолщений больше поясничное, но более дифференцировано шейное, что связано со сложно организованной моторикой руки. В функциональном отношении следует подчеркнуть, организация сенсорных комплексов на уровне шейных сегментов подчинена этой основной функции.

Рецепторы (лат. receptor - принимающий, от recipio - принимаю, получаю), специальные чувствительные образования, воспринимающие и преобразующие раздражения из внешней или внутренней среды организма и передающие информацию о действующем агенте в нервную систему, рецептор. характеризуются многообразием в структурном и функциональном отношениях. Они могут быть представлены свободными окончаниями нервных волокон, окончаниями, покрытыми особой капсулой, а также специализированными клетками в сложно организованных образованиях, таких, как сетчатка глаза, кортиев орган и др., состоящих из множества рецепторов.



Рецепторы (лат. receptor - принимающий, от recipio - принимаю, получаю)

специальные чувствительные образования, воспринимающие и преобразующие раздражения из внешней или внутренней среды организма и передающие информацию о действующем агенте в нервную систему (см. Анализаторы). Р. характеризуются многообразием в структурном и функциональном отношениях. Они могут быть представлены свободными окончаниями нервных волокон, окончаниями, покрытыми особой капсулой, а также специализированными клетками в сложно организованных образованиях, таких, как Сетчатка глаза, Кортиев орган и др., состоящих из множества Р.

Р. делят на внешние, или экстероцепторы, и внутренние, или Интерорецепторы . Экстероцепторы расположены на внешней поверхности тела животного или человека и воспринимают раздражения из внешнего мира (световые, звуковые, термические и др.). Интероцепторы находятся в различных тканях и внутренних органах (сердце, лимфатические и кровеносные сосуды, лёгкие и т.д.); воспринимают раздражители, сигнализирующие о состоянии внутренних органов (висцероцепторы), а также о положении тела или его частей в пространстве (вестибулоцепторы). Разновидность интероцепторов - Проприорецепторы , расположенные в мышцах, сухожилиях и связках и воспринимающие статическое состояние мышц и их динамику. В зависимости от природы воспринимаемого адекватного раздражителя различают Механорецепторы , Фоторецепторы , Хеморецепторы , Терморецепторы и др. У дельфинов, летучих мышей и ночных бабочек обнаружены Р., чувствительные к ультразвуку, у некоторых рыб - к электрическим полям. Менее изучен вопрос о существовании у некоторых птиц и рыб Р., чувствительных к магнитным полям (см. Магнитобиология). Мономодальные Р. воспринимают раздражения только одного рода (механическое, световое или химическое); среди них - Р., различные по уровню чувствительности и отношению к раздражающему стимулу. Так, фоторецепторы позвоночных подразделяются на более чувствительные палочковые клетки, функционирующие как Р. сумеречного зрения, и менее чувствительные колбочковые клетки, обеспечивающие у человека и ряда животных дневное светоощущение и Цветовое зрение ; механорецепторы кожи - на более чувствительные фазные Р., реагирующие только на динамическую фазу деформации, и статические, реагирующие и на постоянную деформацию, и т.д. В результате такой специализации Р. выделяются наиболее значительные свойства стимула и осуществляется тонкий анализ воспринимаемых раздражений. Полимодальные Р. реагируют на раздражения разного качества, например химическое и механическое, механическое и температурное. При этом закодированная в молекулах специфическая информация передаётся в центральную нервную систему по одним и тем же нервным волокнам в виде нервных импульсов, подвергаясь на своём пути неоднократному энергетическому усилению. Исторически сохранилось деление Р. на дистантные (зрительные, слуховые, обонятельные), воспринимающие сигналы от источника раздражения, находящегося на некотором расстоянии от организма, и контактные - при непосредственном соприкосновении с источником раздражения. Различают также Р. первичные (первичночувствующие) и вторичные (вторичночувствующие). У первичных Р. субстрат, воспринимающий внешнее воздействие, заложен в самом сенсорном Нейрон е, который непосредственно (первично) возбуждается раздражителем. У вторичных Р. между действующим агентом и сенсорным нейроном располагаются дополнительные, специализированные (рецептирующие) клетки, в которых преобразуется (трансформируется) в нервные импульсы энергия внешних раздражений.

Все Р. характеризуются рядом общих свойств. Они специализированы для рецепции (См. Рецепция) определённых, свойственных им раздражений, называемыми адекватными. При действии раздражений в Р. возникает изменение разности биоэлектрических потенциалов (См. Биоэлектрические потенциалы) на клеточной мембране, так называемый рецепторный потенциал, который либо непосредственно генерирует ритмические импульсы в рецепторной клетке, либо приводит к их возникновению в другом нейроне, связанном с Р. посредством синапса (См. Синапсы). Частота импульсов возрастает с увеличением интенсивности раздражения. При продолжительном действии раздражителя снижается частота импульсов в волокне, отходящем от Р.; подобное явление уменьшения активности Р. называется адаптацией физиологической (См. Адаптация физиологическая). Для различных Р. время такой адаптации неодинаково. Р. отличаются высокой чувствительностью к адекватным раздражителям, которая измеряется величиной абсолютного порога, или минимальной интенсивностью раздражения, способного привести Р. в состояние возбуждения. Так, например, 5-7 квантов света, падающего на Р. глаза, вызывают световое ощущение, а для возбуждения отдельного фоторецептора достаточно 1 кванта. Р. можно возбудить и неадекватным раздражителем. Воздействуя, например, на глаз или ухо электрическим током, можно вызвать ощущение света или звука. Ощущения связаны со специфической чувствительностью Р., возникшей в ходе эволюции органической природы. Образное восприятие мира связано преимущественно с информацией, идущей с экстероцепторов. Информация с интероцепторов не приводит к возникновению чётких ощущений (см. Мышечное чувство). Функции различных Р. взаимосвязаны. Взаимодействие вестибулярных Р., а также Р. кожи и проприоцепторов со зрительными осуществляется центральной нервной системой и лежит в основе восприятия величины и формы предметов, их положения в пространстве. Р. могут взаимодействовать между собой и без участия центральной нервной системы, т. е. вследствие непосредственной связи друг с другом. Такое взаимодействие, установленное на зрительных, тактильных и других Р., имеет важное значение для механизма пространственно-временного контраста. Деятельность Р. регулируется центральной нервной системой, осуществляющей их настройку в зависимости от потребностей организма. Эти влияния, механизм которых изучен недостаточно, осуществляются посредством специальных эфферентных волокон, подходящих к некоторым рецепторным структурам.

Лит.: Гранит Р., Электрофизиологическое исследование рецепции, пер. с англ., М., 1957; Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967; Винников Я. А., Цитологические и молекулярные основы рецепции. Эволюция органов чувств, Л., 1971; Физиология человека, под ред. Е. Б. Бабского, М., 1972, с. 436-98; Физиология сенсорных систем, ч. 1-2, Л., 1971-72 (Руководство по физиологии); Handbook of sensory physiology, v. 1, pt 1. v. 4, pt 1-2, В. - HdIb. - N. Y., 1971-72; Melzack R., The puzzle of pain, Harmondswarth, 1973. см. также лит. при ст. Интерорецепция .

А. И. Есаков.

Рецепторы фармакологические (РФ), рецепторы клеточные, рецепторы тканевые, расположены на мембране эффекторной клетки; воспринимают регуляторные и пусковые сигналы нервной и эндокринной систем, действие многих фармакологических препаратов, избирательно влияющих на эту клетку, и трансформируют указанные воздействия в её специфическую биохимическую или физиологическую реакцию. Наиболее исследованы РФ, посредством которых осуществляется действие нервной системы. Влияние парасимпатического и двигательного отделов нервной системы (медиатор ацетилхолин) передают два типа РФ: Н-холиноцепторы передают нервные импульсы на скелетные мышцы и в нервных ганглиях с нейрона на нейрон; М-холино-цепторы участвуют в регуляции работы сердца и тонуса гладких мышц. Влияние симпатической нервной системы (медиатор норадреналин) и гормона мозгового вещества надпочечника (адреналина) передаётся альфа- и бета-адреноцепторами. Возбуждение альфа-адреноцепторов вызывает сужение сосудов, подъём артериального давления, расширение зрачка, сокращение ряда гладких мышц и т.д.; возбуждение бета-адреноцепторов - увеличение сахара в крови, активацию ферментов, расширение сосудов, расслабление гладких мышц, усиление частоты и силы сердечных сокращений и т.д. Т. о., функциональное влияние осуществляется через оба типа адреноцепторов, а метаболическое - преимущественно через бета-адреноцепторы. Обнаружены также РФ, чувствительные к дофамину, серотонину, гистамину, полипептидам и другим эндогенным биологически активным веществам и к фармакологическим антагонистам некоторых из этих веществ. Терапевтический эффект ряда фармакологических препаратов обусловлен их специфическим действием на специфические Р.

Лит.: Турпаев Т. М., Медиаторная функция ацетилхолина и природа холинорецептора, М., 1962; Манухин Б. Н., Физиология адренорецепторов, М., 1968; Михельсон М. Я., Зеймаль Э. В., Ацетилхолин, Л., 1970.

Б. Н. Манухин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Рецепторы" в других словарях:

    Рецепторы, активирующие пролиферацию пероксисом Рецепторы, активирующие пролиферацию пероксисом PPAR англ. Peroxisome proliferator activated receptors Рецепторы, активирующие пролиферацию пероксисом (англ. Peroxisome proliferator activated rec … Википедия

    - (от лат. receptor принимающий) нервные образования, преобразующие химико физические воздействия из внешней или внутренней среды организма в нервные импульсы. По месту своего расположения и по выполняемым функциям рецепторы могут быть… … Психологический словарь

    - (лат. receptor), спецыальные чувствительные образования, способные воспринимать раздражения из внешней (экстерорецепторы) и внутренней (интерорецепторы) среды организма и преобразовывать их в нервное возбуждение, передаваемое в центральную… … Экологический словарь

    рецепторы - Этимология. Происходит от лат. receptor принимающий. Категория. Нервные образования, преобразующие химико физические воздействия из внешней или внутренней среды организма в нервные импульсы. Виды. По месту расположения и по выполняемым функциям… … Большая психологическая энциклопедия

    Современная энциклопедия

    - (от лат. receptor принимающий) в физиологии окончания чувствительных нервных волокон или специализированные клетки (сетчатки глаза, внутреннего уха и др.), преобразующие раздражения, воспринимаемые извне (экстероцепторы) или из внутренней среды… … Большой Энциклопедический словарь

    РЕЦЕПТОРЫ, мн., ед. рецептор, а, муж. (спец.). В организме животного и человека: специальные чувствительные образования, воспринимающие внешние и внутренние раздражения и преобразующие их в нервные возбуждения, к рые передаются в центральную… … Толковый словарь Ожегова

    - (лат. receptor принимающий, от recipio принимаю, получаю), спец. чувствит. образования у животных и человека, воспринимающие и преобразующие раздражения из внеш. и внутр. среды в специфич. активность нервной системы. Могут быть представлены как… … Биологический энциклопедический словарь

    Специфические распознающие участки поверхности клеток, имеющие определенную пространственную конфигурацию, хим. состав и физ. св ва. Служат для связи клеток с Ат, Аг, С, лимфо и монокинами, митогенами, интерфероном, гистамином, токсинами,… … Словарь микробиологии

    РЕЦЕПТОРЫ - РЕЦЕПТОРЫ. Специальные концевые образования нервных волокон, воспринимающие раздражение и преобразующие энергию действующих на них раздражителей в процессе нервного возбуждения, которое потом по чувствительным нервам передается в вышележащие… … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    Рецепторы - (от латинского receptor принимающий) (физиологический), окончания чувствительных нервных волокон или специализированные клетки (сетчатки глаза, внутреннего уха и др.), преобразующие раздражения, которые воспринимаются извне или из внутренней… … Иллюстрированный энциклопедический словарь

Существуют несколько классификаций рецепторов:

    По положению

    • Экстерорецепторы (экстероцепторы) - расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)

      Интерорецепторы (интероцепторы) - расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)

      • Проприорецепторы (проприоцепторы) - рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.

    По способности воспринимать разные стимулы

    • Мономодальные - реагирующие только на один тип раздражителей (например, фоторецепторы - на свет)

      Полимодальные - реагирующие на несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).

    По адекватному раздражителю

    • Хеморецепторы - воспринимают воздействие растворенных или летучих химических веществ.

      Осморецепторы - воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды).

      Механорецепторы - воспринимают механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)

      Фоторецепторы - воспринимают видимый и ультрафиолетовый свет

      Терморецепторы - воспринимают понижение (холодовые) или повышение (тепловые) температуры

      Болевые рецепторы , стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность ноцицепторов, которя не позволяет отнести их, например, к «высокопороговым терморецепторам», состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов .

      Электрорецепторы - воспринимают изменения электрического поля

      Магнитные рецепторы - воспринимают изменения магнитного поля

У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции - осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции - зрение. Терморецепторы есть в коже и некоторых внутренних органах. Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы. Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, восппринимающие pH, концентрации углекислого газа и кислорода в крови, включены в регуляцию дыхания и т.д.

Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток .

26г лаз (лат. oculus ) - сенсорный орган (орган зрительной системы ) человека и животных, обладающий способностью воспринимать электромагнитное излучение в световом диапазоне длин волн и обеспечивающий функцию зрения . У человека через глаз поступает около 90 % информации из окружающего мира .

Глаз позвоночных животных представляет собой периферическую частьзрительного анализатора , в котором фоторецепторную функцию выполняютнейроны - фотосенсорные клетки («нейроциты») сетчатой оболочки . Внутреннее строение

1. Задняя камера 2. Зубчатый край 3. Ресничная (аккомодационная ) мышца 4. Ресничный (цилиарный) поясок 5. Шлеммов канал 6. Зрачок 7. Передняя камера 8. Роговица 9. Радужная оболочка 10. Кора хрусталика 11. Ядро хрусталика 12. Цилиарный отросток 13. Конъюнктива 14. Нижняя косая мышца 15. Нижняя прямая мышца 16. Медиальная прямая мышца 17. Артерии и вены сетчатки 18. Слепое пятно 19. Твердая мозговая оболочка 20. Центральная артерия сетчатки 21. Центральная вена сетчатки 22. Зрительный нерв 23. Вортикозная вена 24. Влагалище глазного яблока 25. Жёлтое пятно 26. Центральная ямка 27. Склера 28. Сосудистая оболочка глаза 29. Верхняя прямая мышца 30. Сетчатка

Глазное яблоко состоит из оболочек, которые окружают внутреннее ядро глаза, представляющее его прозрачное содержимое - стекловидное тело , хрусталик , водянистая влага в передней и задней камерах.

Ядро глазного яблока окружают три оболочки: наружная, средняя и внутренняя.

    Наружная - очень плотная фиброзная оболочка глазного яблока (tunica fibrosa bulbi ), к которой прикрепляются наружные мышцы глазного яблока , выполняет защитную функцию и благодаря тургору обусловливает форму глаза. Она состоит из передней прозрачной части - роговицы , и задней непрозрачной части белесоватого цвета - склеры .

    Средняя, или сосудистая, оболочка глазного яблока (tunica vasculosa bulbi ), играет важную роль в обменных процессах, обеспечивая питание глаза и выведение продуктов обмена. Она богата кровеносными сосудами и пигментом (богатые пигментом клетки хориоидеи препятствуют проникновению света через склеру, устраняя светорассеяние). Она образована радужкой , ресничным телом и собственно сосудистой оболочкой . В центре радужки имеется круглое отверстие - зрачок, через которое лучи света проникают внутрь глазного яблока и достигают сетчатки (величина зрачка изменяется в результате взаимодействия гладких мышечных волокон - сфинктера и дилататора, заключённых в радужке и иннервируемых парасимпатическим и симпатическим нервами). Радужка содержит различное количество пигмента, от которого зависит её окраска - «цвет глаз ».

    Внутренняя, или сетчатая, оболочка глазного яблока (tunica interna bulbi ), - сетчатка - рецепторная часть зрительного анализатора, здесь происходит непосредственное восприятие света, биохимические превращения зрительных пигментов, изменение электрических свойств нейронов и передача информации вцентральную нервную систему .

С функциональной точки зрения оболочки глаза и её производные подразделяют на три аппарата: рефракционный (светопреломляющий) и аккомодационный (приспособительный), формирующие оптическую систему глаза, и сенсорный (рецепторный) аппарат.

В классификации рецепторов центральное место занимает их деление в зависимости от вида воспринимаемого раздражителя. Существует пять типов таких рецепторов. 1. Механорецепторы возбуждаются при их механической деформации, расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах. 2. Хеморецепторы воспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости. Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге. 3. Терморецепторы воспринимают изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, слизистых оболочках, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге. 4. Фоторецепторы в сетчатке глаза воспринимают световую энергию. 5. Ноцицепторы, возбуждение которых сопровождается болевыми ощущениями. Раздражителями этих рецепторов являются механические, термические и химические факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах. С психофизиологической точки зрения рецепторы подразделяют в соответствии с органами чувств и формируемыми ощущениями на зрительные, слуховые, вкусовые, обонятельные и тактильные.

По расположению в организме рецепторы делят на экстеро- и интерорецепторы. К экстерорецепторам относятся рецепторы кожи, видимых слизистых оболочек и органов чувств: зрительные, слуховые, вкусовые, обонятельные, тактильные, болевые и температурные. К ин-терорецепторам относятся рецепторы внутренних органов, сосудов и ЦНС. Разновидностью интерорецепторов являются рецепторы опорно-двигательного аппарата (проприорецепторы) и вестибулярные рецепторы. Если одна и та же разновидность рецепторов локализована как в ЦНС (в продолговатом мозге), так и в других местах (сосудах), то такие рецепторы подразделяют на центральные и периферические. По скорости адаптации рецепторы делят на три группы: быстро адаптирующиеся (фазные), медленно адаптирующиеся (тонические) и смешанные (фазнотонические), адаптирующиеся со средней скоростью. Примером быстро адаптирующихся рецепторов являются рецепторы вибрации (тельца Пачини) и прикосновения (тельца Мейснера) к коже. К медленно адаптирующимся рецепторам относятся проприорецепторы, рецепторы растяжения легких, болевые рецепторы. Со средней скоростью адаптируются фоторецепторы сетчатки, терморецепторы кожи. По структурно-функциональной организации различают первичные и вторичные рецепторы. Первичные рецепторы представляют собой чувствительные окончания дендрита афферентного нейрона. Тело нейрона расположено в спинно-мозговом ганглии или в ганглии черепных нервов. В первичном рецепторе раздражитель действует непосредственно на окончания сенсорного нейрона. Первичные рецепторы являются филогенетически более древними структурами, к ним относятся обонятельные, тактильные, температурные, болевые рецепторы и проприорецепторы. Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончанием дендрита сенсорного нейрона. Это клетка, например фоторецептор, эпителиальной природы или нейроэктодермального происхождения. Данная классификация позволяет понять, как возникает возбуждение рецепторов. Реце́птор - сложное образование, состоящие из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс. Рецепторы человека. Рецепторы кожи. Болевые рецепторы. Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность. Тельца Мейснера - рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность. Тельца Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями. Рецепторы волосяных луковиц - реагируют на отклонение волоса. Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями. Колба Краузе - рецептор, реагирующий на холод. Рецепторы мышц и сухожилий

Мышечные веретена - рецепторы растяжения мышц, бывают двух типов: с ядерной сумкой, с ядерной цепочкой. Сухожильный орган Гольджи - рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его. Рецепторы связок В основном представляют собой свободные нервные окончания, меньшая группа - инкапсулированные. Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини. Рецепторы сетчатки глаза. Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которые содержат светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент - это и есть основа цветового зрения. Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны). Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A.

15. Преобразование энергии раздражителя в рецепторах. Рецепторный и генераторный потенциалы. Закон Вебера-Фехнера. Абсолютный и дифференциальный пороги чувствительности .

Этапы преобразования энергии внешнего раздражителя в энергию нервных импульсов. Действие раздражителя. Внешний стимул взаимодействует со специфическими мембранными структурами окончаний чувствительного нейрона (в первичном рецепторе) или рецептирующей клетке (во вторичном рецепторе), что приводит к изменению ионной проницаемости мембраны. Генерация рецепторного потенциала. В результате изменения ионной проницаемости происходит изменение мембранного потенциала (деполяризация или гиперполяризация) чувствительного нейрона (в первичном рецепторе) или рецептирующей клетке (во вторичном рецепторе). Изменение мембранного потенциала, наступающее в результате действия раздражителя, называют рецепторным потенциалом (РП). Распространение рецепторного потенциала. В первичном рецепторе РП распространяется электротонически и достигает ближайшего перехвата Ранвье. Во вторичном рецепторе РП электротонически распространяется по мембране рецептирующей клетки и достигает пресинаптической мембраны, где вызывает выделение медиатора. В результате срабатывания синапса (между рецептирующей клеткой и чувствительным нейроном) происходит деполяризация постсинаптической мембраны чувствительного нейрона (ВПСП). Образовавшийся ВПСП распространяется электротонически по дендриту чувствительного нейрона и достигает ближайшего перехвата Ранвье. В области перехвата Ранвье РП (в первичном рецепторе) или ВПСП (во вторичном рецепторе) преобразуется в серию ПД (нервных импульсов). Образовавшиеся нервные импульсы проводятся по аксону (центральному отростку) чувствительного нейрона в ЦНС. Поскольку РП генерирует образование серии ПД, его часто называют генераторным потенциалом. Закономерности преобразования энергии внешнего раздражителя в серию нервных импульсов: чем выше сила действующего раздражителя, тем больше амплитуда РП; чем больше амплитуда РП, тем больше частота нервных импульсов. Рецепторный и генераторный потенциалы - это частные случаи электротонических потенциалов. Когда рецепторная (сенсорная) клетка, например механочувствительная волосковая или вкусовая, подвергается воздействию соответствующего стимула, реализуется более или менее сложный набор событий, ведущих к изменениям электрической полярности участка их мембраны. Это явление именуется рецепторным потенциалом. В большинстве случаев рецепторные потенциалы - это деполяризация, в других, однако, в частности в палочках и колбочках сетчатки, - это гиперполяризация. Так или иначе, результат - одни и тот же - возникают токи между подвергающимся воздействию участком мембраны и другими участками мембраны рецепторной клетки. В общем случае, изменения электрической полярности (увеличение ее или уменьшение) влияет на выделение медиатора на подлежащий сенсорный нейрон. Не все сенсорные системы развили специализированные сенсорные клетки. Обонятельные и некоторые механорецептивные системы построены на нейросенсорных клетках. В таких случаях функции детектирования соответствующих факторов внешней среды и передачи информации в мозг совмещаются в одной клетке. Электрофизиологические феномены при этом аналогичны только что описанным. Когда чувствительные окончания нейросенсорной клетки подвергаются воздействию стимула, ряд биохимических процессов приводит к изменению электрического потенциала (в случае нейросенсорных клеток - это всегда деполяризация). Механизмом локальных токов таков, что деполяризация распространяется в область мембраны, изобилующую потенциал-зависимыми Na+-каналами. Если деполяризация достаточно велика, Na+-каналы открываются, в результате чего генерируется потенциал действия, который без декремента передается в центральную нервную систему. Поскольку первоначальная деполяризация происходит не в специальной рецепторной клетке, она часто именуется генераторным потенциалом. Многие, однако, оба варианта называют рецепторными потенциалами. Амплитуда генераторных и рецепторных потенциалов зависит от величины стимула - между потенциалом и интенсивностью стимула существует практически прямая пропорциональная зависимость. Из-за того, что локальные токи должны быть достаточно значительными по величине, чтобы запустить выделение медиатора или активировать хотя бы часть популяции потенциал-зависимых Na+-каналов до порогового уровня, запуск потенциала действия в сенсорном нерве наблюдается только, когда рецепторный или генераторный потенциал достигают определенной амплитуда. Иными словами, потенциал действия не генерируется до тех пор, пока стимул не достигнет критической величины. Закон Вебера - Фехнера - эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула.